Fujiwara’s Theorem for Equivariant Correspondences
نویسنده
چکیده
Let q be a power of a prime p, and let k = Fq be an algebraic closure of Fq. For objects over Fq we use a subscript 0, and unadorned letters denote the base change to k. For example, X0 denotes a scheme (or stack) over Fq and X denotes the fiber product X0 ×Spec(Fq) Spec(k). Let X0 be a separated finite type Fq-scheme. A correspondence on X0 is a diagram of separated finite type Fq-schemes C0 c1 ~~|| || || || c2 !! C C C C C C C C
منابع مشابه
ar X iv : 0 90 5 . 11 53 v 2 [ m at h . K T ] 2 7 M ay 2 00 9 EQUIVARIANT CORRESPONDENCES AND THE BOREL - BOTT - WEIL THEOREM
We formulate and prove the special case of Serre duality involved in the Borel-Bott-Weil theorem in the language of equivariant Kasparov theory. The method is to combine the Atiyah-Singer index theorem and the framework of equivariant correspondences developed in another paper by the first author and Ralf Meyer. The twisted Dolbeault cohomology groups of the flag variety figuring in the Borel-B...
متن کاملar X iv : 0 90 5 . 11 53 v 1 [ m at h . K T ] 8 M ay 2 00 9 EQUIVARIANT CORRESPONDENCES AND THE BOREL - BOTT - WEIL THEOREM
We show that the special case of Serre duality involved in the Borel-Bott-Weil theorem can be formulated and proved in the context of equi-variant Kasparov theory by combining the Atiyah-Singer index theorem and the framework of equivariant correspondences developed in another paper by the first author and Ralf Meyer. The twisted Dolbeault cohomology groups of a flag variety that figure in the ...
متن کاملVector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملEquivariant Cycles and Cancellation for Motivic Cohomology
We introduce a Bredon motivic cohomology theory for smooth schemes defined over a field and equipped with an action by a finite group. These cohomology groups are defined for finite dimensional representations as the hypercohomology of complexes of equivariant correspondences in the equivariant Nisnevich topology. We generalize the theory of presheaves with transfers to the equivariant setting ...
متن کاملModeling of Infinite Divisible Distributions Using Invariant and Equivariant Functions
Basu’s theorem is one of the most elegant results of classical statistics. Succinctly put, the theorem says: if T is a complete sufficient statistic for a family of probability measures, and V is an ancillary statistic, then T and V are independent. A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics. In addition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008